Introduction
This course “Experience Design for Ubiquitous Computing” has had a focus on both the social and the technical aspects of Ubiquitous Computing, and how User Experiences can be designed keeping in mind all the myriad considerations. We began this course by looking at what was to be the lynchpin of the rest of our journey- Mark Weiser’s vision of the Ubiquitous Computing future [1]. We are arguably two thirds or so of the way there and his vision has materialized in some way albeit not exactly as he had envisioned. Now I will attempt to show my own vision of the future, for the next few years and even beyond.
Beyond the Western UbiComp Worldview
One of the key issues that was discussed time and time again was how Mark Weiser’s vision and UbiComp literature in general seemed to revolve around western culture. Of course, this was addressed by Dourish and Bell in their book [2], but there weren’t any examples. I will attempt to explain how UbiComp technology and design affects the part of the world not focused upon by current literature.
A vision for UbiComp – Convergence of Current and Future Technology
Mark Weiser showed us all his vision of the future in 1991[1]. He envisioned multiple portable computing devices in various form factors, being cheap enough so that people would have many of them at hand and could trade them around like hall passes. One of the foundations of this vision is Moore’s law, which recently completed 50 years of existence. Added to that is the proliferation of big data- tremendous amounts of user generated data being created, collected and now even harvested in some cases. There are also some technologies at the fringes of UbiComp, like augmented and virtual reality. Allow me to show you my vision of the future, with all these technologies taken into consideration.
Moore’s Law continues to hold true, and scientists eventually find a means to miniaturize computing capabilities to such a small scale that it can be measured in a Nano scale. These devices will drive the next generation of Ubiquitous Computing. Often referred to as “smart dust” [8], this concept has far reaching applications in the future. I can imagine smart dust being deployed in farmlands and agricultural fields, giving relaying soil nutrient and other such data to central governmental cloud services, from where farmers can get real time updates about their soil conditions whether they would need fertilizer, etc. This may ensure that farmers would not require to learn about complex systems for computing.
This brings us to the future of location and context awareness. [3, 5] One of the major changes that I see happening is the proliferation of augmented reality. I envision the use of this technology in a scenario that not many pay close attention to, the field of social networking and social media. If you observe what social media giants like Facebook are doing these days, you will observe a heightened interest in big data, and augmented and virtual reality. Facebook’s acquisition of Oculus and messaging platform Whatsapp is proof of this. In my opinion, Facebook’s mission for the future is to permeate into every aspect of an individual’s life. A person wakes up in the morning, his smart device by his side, a multitude of smart dust sensors scattered all around the environment. Wearable devices tell him he should get something to eat, because his blood sugar levels are quite low. His sleep pattern has been erratic over the past few weeks due to an upcoming work deadline, and he can see this through a head mounted display. Wherever he goes, the head mounted display [4] provides him up to date contextual data about the surroundings, his neighborhood, and allows him to take pictures simply by blinking his eyes. This technology brings forth an exponential increase in the amount of user generated data on social networks, with some people allowing social networks to showcase each and every minute by minute detail of their lives, and Facebook provides the facilities to do so. Increase in computing power allows people to live stream to hundreds or thousands of people at once through their phones or their wearables, be it talking to family, or a social gathering, or simply just entertaining personalities who use this as a means to reach out to their followers and perhaps gain some revenue through online payment mechanisms.
One of the major sectors to be influenced greatly by the proliferation of ubiquitous computing will be education. In ancient times, students would get individual attention from teachers. This kind of teaching was reserved for the upper echelon of society of course. After the industrial revolution, the modern metaphors of classrooms with class teachers and tens if not hundreds of students being taught by one teacher became the norm. The internet brought about a revolution called e-learning. People of all ages could now access eBooks and video lectures from around the world. However, I feel that in the future, the confluence of contextual awareness and an exponential increase in the data available to people will bring about the next revolution in education. Children these days have access to smart devices with internet connections, and they are able to search for things simply by typing in queries in search engines. The rise of UbiComp based design will create a new kind of education system, which would be like a personalized digital teacher. Like Alexander the Great had a teacher and mentor in Aristotle, children will have at their disposal a digital teacher that will teach them exactly based on the child’s needs, based on data gathered through wearables, communication via voice and other input modalities, and various other means. Parents will have a control over and will be able to keep a track of their child’s progress, and will know what their child is learning. Technology, if influenced by the research about child psychology, will be able to cater to even special needs children through this new system. These days we see e-learning platforms like Lynda.com, but they are limited in their effectiveness, as they are not personalized for each and every individual student.
Of course the usual question arises, “What about privacy? Will people allow technology to permeate into their lives to this extent?” I believe so. As Langheinrich [6, 7] said, about 60-70% of people fall under the category of privacy pragmatics. As technology continues to permeate into our lives, and marketers continue to sell smart devices, wearables and even services to the consumers, it will create a level of dependency on these services that we would perhaps find hard to get out of. Just look at our increasing dependence on Google services, for example. Most consumers and small enterprises use Google services for email, cloud storage and even collaborative documents. As this dependence increases, we will slowly allow more and more technology to permeate into our very lives, and we will become more accepting of it as well. Just have a look at how instant messaging has changed family dynamics. I frequently chat with my family on instant messaging platforms like Whatsapp, which recently integrated a calling feature. An immediate result was me getting calls from my distant relatives, just because it was possible. This is an integration of various affordances into systems that increases adoption and acceptance. This also means there’s an increase in the “messiness” of the whole system. Free market competition means that cross-platform communication will probably never be as seamless as some people would like. This can be especially important if we move forward to a vision of connected homes, with the “internet of things” concept.
Another aspect that is important is the energy requirements for powering all these devices. Battery technology has not sufficiently advanced, and techniques like energy scavenging [10] have not yielded significant improvements. This could prove to be a major stumbling block for the proliferation of UbiComp.
Speaking of stumbling blocks, one of the concerns I have is whether all the questions that we have considered over the course of the semester will even be considered by creators of UbiComp systems going forward. I have observed that many of the case studies have been a post rationalization of systems by researchers, to look at what was right and what went wrong. Will the major players in UbiComp consider the socio-technical challenges while creating new systems? In the ethnography discussion [9] Dourish and Bell show in a way, that sometimes introducing technology into different scenarios needs some analysis. Sometimes, you need to know when not to introduce technology, rather than how to introduce new technology into each and every new niche or domain.
Conclusion:
Ubiquitous Computing seemed like a field that was myopic in the sense that it was so heavy on western influences. The key focus areas seemed to be sensors, person tracking and connected environments like the smart home. However, the more that I read into it, especially the two texts “Ubiquitous Computing Fundamentals” and “Divining a Digital Future” that not only showed the technical but the sociological considerations of this field. Being on the cutting edge of technology, UbiComp poses some novel questions and concerns that are not apparent at a surface level evaluation of the field. Designing systems for Ubiquitous Computing therefore should be in essence a multi-disciplinary approach.
References:
- Weiser, M. (1991).The computer for the 21st century. Scientific American 265 (3), 94–104.
- Dourish, P. & Bell, G. (2011). Contextualizing ubiquitous computing. In P. Dourish & G. Bell, Divining a Digital Future: Mess and Mythology in Ubiquitous Computing(pp. 9–43). Cambridge, MA: MIT Press.
- Estrin, D., Culler, D., Pister, K., & Sukhatme, G. (2002). Connecting the physical world with pervasive networks. IEEE Pervasive Computing, 1(1), 59–69.
- Starner, T. (2013, April–June). Project Glass: An extension of the self. IEEE Pervasive Computing, 12 (2), 14–16.
- Dey, A.K. (2010). Context-aware computing(Chapter 8, pp. 321-352). In J. Krumm (Ed.), Ubiquitous Computing Fundamentals. Boca Raton, FL: Taylor & Francis/CRC Press.
- Langheinrich, M. (2010).Privacy in ubiquitous computing (Chapter 3, pp. 95–160). In J. Krumm (Ed.), Ubiquitous Computing Fundamentals. Boca Raton, FL: Taylor & Francis/CRC Press.
- Dourish, P. & Bell, G. (2011).Rethinking privacy. In P. Dourish & G. Bell, Divining a Digital Future: Mess and Mythology in Ubiquitous Computing (pp. 137-160). Cambridge, MA: MIT Press.
- Warneke, B., Last, M., Liebowitz, B., & Pister, K. S. (2001). Smart dust: Communicating with a cubic-millimeter computer.Computer, 34(1), 44-51.
- Dourish, P. & Bell, G. (2011).A role for ethnography: Methodology and theory. In P. Dourish & G. Bell, Divining a Digital Future: Mess and Mythology in Ubiquitous Computing (pp. 61–89). Cambridge, MA: MIT Press.
- Paradiso, J.A., & Starner, T. (2005).Energy scavenging for mobile and wireless electronics. IEEE Pervasive Computing, 4(1), 18–27. (doi)